
ISRAEL JOURNAL OF MATHEMATICS, Vol. 53, No. I, 1986 

UNIFORM CONVEXITY PROPERTIES OF NORMS 
ON A SUPER-REFLEXIVE BANACH SPACE 

BY 

CATHERINE FINET 
Department o[ Mathematics, Universit( de l'Etat d Mons, Avenue Maistriau, 15, 7000 Mons, Belgium 

ABSTRACT 

We study uniform convexity and smoothness properties satisfied by all the 
equivalent norms of a super-reflexive Banach space. We give some applications 
concerning quasi-transitive Banach spaces, and the uniform approximation 
property. 

Introduction 

P. Enflo proved that there exists on every super-reflexive Banach space an 

equivalent norm which is uniformly convex ([5]). This result had been made 

more precise by G. Pisier ([14]): every super-reflexive Banach space has an 

uniformly convex equivalent norm with a modulus of convexity of power-type. 

A natural question is: what can be said of any equivalent norm on a 

super-reflexive Banach space? We show that every equivalent norm has some 
uniform convexity and smoothness properties. 

Let us consider the notion of strong extreme point (this notion has been 

introduced by K. Kunen and H. Rosenthal ([11])). We can define a modulus of 

strong extremality as follows: let x be a point of the unit sphere; the modulus of 

strong extremality in x is the number: 

re>o, a(x,E)=inf{1-;t;B7:ll;tx+_rll<=l, llrll>=e}. 

It is easy to show that a point x of the unit sphere is a strong extreme point of the 

unit ball if and only if A(x, e ) >  0, Ve > 0. 

In Section I, we will show that if E is a super-reflexive Banach space and B is 

the unit ball of a given equivalent norm on E, then B has "many" strong 
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extreme points with an uniform minoration of the modulus of strong extremality 

of these points. 

Our major tool will be an adaptation of a technique of J. Lindenstrauss ([12]). 

In Section II, we will give some applications: duality with smoothness 

properties, quasi-transitive Banach spaces and uniform approximation property. 

Notations 

Let X be a Banach space and N be a norm on X. We denote B~ (X) (or B(X)) 
the unit ball of X, SN(X) the unit sphere and X* its dual. If F is a subset of X, 

conv F is the convex hull of F. 

I. Strong extreme points 

We will show that every unit ball in a super-reflexive Banach space is "up to 

r/" contained in the convex hull of a subset of its strong extreme points which 

satisfies a condition of uniformity. 

DEFINITION 1 ([11]). Let C be a closed convex bounded set. A point x in C is 

a strong extreme point if for every ~ > 0 there exists 7 / (e )>0  such that 

Let us compare this notion with classical ones ([4]). The following can be 

shown: 

(1) xstr°nglyexp°sed ~:~ x str°ngextreme ~ x e x t r e m e ' ~  
(2) A norm is locally uniformly convex ~. every point of the unit sphere is a 

-.7, 
strong extreme point of the unit ball ~ the norm is strictly convex (see I41). 

The modulus A(x, e) which is defined below measures "how much" a point is a 
7 

strong extreme point of the unit ball. 

DEFINITION 2. Let X be a Banach space with norm I1" II. The modulus of 

strong extremality in x is the number 

W>o, %,(x,  e )  = in f{1 -  ,~ ; 3T II,~x - TII--< 1, IITII---> e}. 

REMARKS. (1) The modulus of strong extremality in a point is an increasing 

function and AIHI(X, 0) = 0. 
(2) It is easy to show that x is a strong extreme point of the unit ball if and 

only if All.ll(X, e )>O,  Ve >0.  
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(3) Recall that the modulus of convexity (see [4]) is given by 

i n f { 1 -  ~ ,llxll=<l, nyll=<l, nx-yJl_->e} ( e >  ~lf.ll(E ) 0). 

The modulus of convexity is of power-type if there exist C > 0, q => 2 such that 
for every e > 0, 6H(e ) => CeL It can be proved that AH(X, e ) >  6H(2e) and 
conversely, if inf{AH(x, e), IIx II = 1} > 0, w > 0 then the norm It" II is uniformly 
convex. 

Let us give now the main result of this section. For any equivalent norm I1 II on 
a super-reflexive Banach space X we let 

I)H(K, q) = {x ~ SH(X) : AH(x, e) => Ke q, Ve > 0} (K > 0, q _-> 2). 

With this notation, the following is true: 

THEOREM 3. Let X be a super-reflexive Banach space, and 

equivalent norm on X with modulus of convexity of power-type. 

N is any equivalent norm on X. Then: 

such that 

I1"11 be an 

V,/, 0 < 7 / < 1 ,  =lK(rt) > 0 

BN (X) _C conv[l)N (K (rt), q)] + ,/B~ (X). 

PROOF. We begin with a lemma. 

LEMMA 4. Let (Y, lit" 161) be a uniformly convex space with modulus of 
convexity 8 ill. JII. Let S : (X, N)--~ Y be an isomorphism between X and a subspace 
S (X) of Y. If  S attains its norm in x, then x is a strong extreme point of BN (X) and 
moreover 

a~ (x, ~ ) > 8 ~,~ ,L~ II s II II s i l l  

PROOF OF THE LEMMA. We consider e > 0, k t = hx + % k2 = hx - ~" in the unit 

ball BN (X) and NO" ) => e. We let So = s/ll s II. One has 

IlSolll Ill So(k,-  k2) Ill --> N ( k , -  k2)>2e 

and thus 

ill So(k, - k2)Ill => ~ .  
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Clearly Sokl and Sok2 are in the unit ball of Y. Therefore, 

II 
But we have 

Therefore 

This means 

IIIso k,+ 2 

A _-< 1 - 8 Ill-lii 

8 nl. ut ~ 1 - A 

and thus, by the definition of the modulus of strong extremality, 

( 2 e )  8 IH-Ill ~ ~ AN (X, e). 

Since II So 1 II = II S II II S-I II, this shows the lemma. • 

Let us come back to the proof of the theorem. The modulus of convexity of 

the norm II-II of x is of power-type, thus there exist C > 0, q _--- 2 such that for 

every e > 0, 81Hi(e)_--> C" e q. 
We let Y =  X O e R  with the norm 

IIl(x,r)ll l  = (llxl12+ r2) 1'2 for x E X  and r E R .  

An easy computation shows that 

8ul.ljt (e)_- > Ce ~ ve >0.  

Let A, B be such that, for every x E X, AN(x)<= IIx 11--< BN(x), and let 7/ be a 

given number, 0 < r / < l .  We have to find K > 0  so that B~(X)C_ 
conv[l~ (K, q)] + 7/BN (X). 

If BN(X)~conv[i'~N(K,q)]+nBN(X), there exists x EB~(X) and 

x ~ conv[12~ (K, q)] + ~/BN (X). This implies that 

d(x, conv[laN(K,q)]+~ 2 BN(X)) > 4~ • 
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Thus there exists f E X * ,  I l f l l= l  such that for every y Econv[l"~N(K,q)], 

I/(y)l--< 1 - n/2. Therefore, for every y E conv[f~N(K, q)] +~nBN(X), I/(Y)I--< 
1 - ~//4. 

We define an operator T from X to Y by Tx = (x, Af(x)) with h = 9B/~7 ; note 

that h does not depend on K. T is an isomorphism into. 

We have 

II TI[ 2 = sup{llx 112+ A2lf(x)[ 2, N(x)  < 1} 

On the other hand, one has for x E c o n v [ ~ ( K , q ) ]  +¼~B~(X) 

[II Tx lII 2 <= B2 + ,~ 2 1 -  <=(h-B)  2. 

Since X is reflexive, there exists an isomorphism S from X into Y attaining its 

norm in a point t in B~(X)  and close to T ([12]). Let S and t be such that 

One has 

(1) 

I I S - T I I ~ B ~  and IIIStlll -IIsII- 

, ist, l  

On the other hand, if x E conv[~N(K, q)] +I , /BN(X):  

III Sx III ~sup {Ill(T- S)(y)lll, y ~ conv[ON(K,q)]+ 4 ~ B,,(X)} + III T(x)lll 

From the inequalities (1), (2), we deduce that t~conv[O~(K,q)] +¼71B(X). 
We let So = s/lls II. Let us estimate the norm of So 1. One has 

II zll 2 --- sup{llx 112+ x21/(x)l 2, N(x)<-_ 1} 

Thus 

We also have [I T-111 ~ 1/A and 
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Thus 

< 1 (1 +-~-~). ,s 

B l l  
IISo'll = IIsII Ils-'ll ~ ~-  ~ (1 + B) 

and this norm does not depend on K. 

The operator So (with II Soil = ]) attains its norm in the unit ball but not on the 

set conv[f~u(K,q)] +¼~TB(X); So is an isomorphism into and moreover 

11 I I s ~ ' l l ~  (1+ R). 

Now Lemma 4 implies that the point t in which So attains its norm satisfies 

a~,(t,e)>__ C(lls 2e ]q • 

Thus we have 

{ 2A2rl ~qeq ° 
z~,,,(t,e)>=Ckll(l+B)B] , 

and K such that BN (X) ~Z conv[l-lN (K, q)] + nBN (X) cannot be smaller than 
K(~)  such that So attains its norm on f~N(K(rt),q). 

Therefore, if we take 

we have 

~ [  2A2r/ \q 
K(~)=C'~11(1+B)B] 

B~ (X) _C conv(l"~N (K(rt ), q)) + nB~ (X). • 

REMARKS. (1) In the case where dim X is finite, this result can be obtained 

more directly by using arguments of strong compacity. 

(2) It could be noted that the expression 

{ 2A2r/ '~q 
KOq ) = C \11B(1 + B)] 

is uniform on the norms N satisfying AN(x) <- Ilx II < BN(x). 
(3) The example of X = @e l~ shows that the theorem is not true in general 

for a reflexive space X (see Section II below). It would be nice to know if the 
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validity of Theorem 3 characterizes the class of super-reflexive Banach spaces in 

the following sense: 

(*) For every equivalent norm N on X, for every , / > 0 ,  there exists 

KN,, ( ' )  > 0 such that BN (X) C_ conv [IN,~ + T/BN (X) where 

fiN,, = {x C SN (X) : AN (x, e ) _--> KN., (e), Ve > 0}. 

Is it true that the (*) property implies the super-reflexivity? 

(4) We introduce the notion of p-strongly exposed point. In what follows we 

denote by p an increasing function in [0, 1] such that p(0)= 0. 

DEFINITION 5. Let C be a subset of a Banach space X and x E C. We say 

that x is p-strongly exposed in C if 

(1) there exists f ~ X *  such that f ( x ) =  sup{/(y), y E C}, 

(2) if y E C satisfies f ( x )  - f(y)  < p (e) for some e e ]0, 1[ then l[ x - y II--< e. 
Then f is called a p-strongly exposing functional of x. 

Let I1 II be a norm of a Banach space X, let us denote ~H(P) the set of the 

p-strongly exposed points in the unit ball B H ( X  ). 

The proof of the following statement is very similar to the proof of Theorem 3. 

We do not give it for the sake of shortness 

PROPOSmON 6. Let X be a super-reflexive Banach space and I1 II be an 

uniformly convex norm on X such that 3H(e) > Ce q, Ve > 0; N is an equivalent 

norm. Then, for every 77 E ]0, 1[ there exist a function p, and a constant K (~  ) such 

that 

BN (X) _C conv[ ~N (p,) Cl ON (K(*/), q)] + r/BN (X). 

REMAgK. By using an argument of J. M. Borwein ([2]) it is possible to show 

that the family of the p,-strongly exposing functionals for a point of the unit ball 

is an ~7-net in S(X*) .  

II. Applications 

1. Duality with Smoothness Properties 

We say that a Banach space (X,I[.II) belongs to the class ~ if: 

for every T/~ ]0, 1[, there exists a function p~ such that 

BH(X ) C_ conv(~ll.ll(p ~ )) + ~/BH(X ). 

When this property of uniform exposition is transformed by duality, we obtain a 
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condition of uniform smoothness, more precisely: let us recall a definition which 

has been introduced in ([6], [7]). 
Let X be a Banach space. ~ (X) is the set of the x (in the unit sphere) where 

the norm is Fr6chet-smooth, and for every x ~ ~(X) ,  we denote fx the 

differential of this norm in x. 

DEFINITION 7. We say that X is almost uniformly smooth (a.u.s.) if there 

exists a family (A~)o<,<l of subsets of ~ ( X )  such that: 

(a) VeE]0,1[ ,  3 6 ( e ) > 0  such that y E B ( X * ) ,  xEA~  and y ( x ) >  

1-,~(~) ~ Ily - f ,  JJ< e. 
(b) The set X~ ={f~,xEA~} is a (1-e)-norming subset of X* (that is, 

Vy ~ X, sup{f~ (y), z E Ae} => (1 -  )11 y II). 
Let us point out that this terminology is different from the terminology used in 

([6]). The duality between the class ~ and the class of almost uniformly smooth 

spaces is illustrated by the following proposition. 

PROPOSITION 8. X belongs to the class ~ if and only if X* is almost uniformly 
smooth. 

PROOF. (1) Suppose X is in the class cg and, for every e > 0, let 

A, = {y * E S(X*) : y * q~-strongly exposes a point y of X}. 

If y* E A,, then X* is smooth in y* and f~. = y. The uniformity can be deduced 

by the computation which is used in the proof of V. L. Smulyan ([4], [15]). 
(2) Suppose now X* is a.u.s, and X ~  ~. There exists ~1 such that for every ~0, 

B(X)~conv(~(q~))+nB(X). Therefore, 3f, [Ifl l=l and for every 

y E conv(~(q~)) + n/4B(X), 

(1) If(y)l =< 1 - n/4. 

Let x EA~, then Vy ES(X**), 1 - y ( x )  < ~(n) ~ IlY-f~ll <= n; and f~ is 
~0~-strongly exposed by x and f~ E X. Then (1) implies that lf(f~)l---< 1 - 77/4, for 

every x E A,/8. This is impossible since X~/8 is an (1 - ~/8)-norming subset of 

X**. • 

With this terminology, Propositions 6 and 8 give us the following result: 

PROPOSITION 9. Every super-reflexive space is almost uniformly smooth for 
every equivalent norm. 

REMARKS. (1) Let us notice that it is not true in general for reflexive spaces 

(an example is the space @t~ l',, see [6]). 
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(2) The almost uniform smoothness property is far from implying reflexivity. 

Examples of a.u.s, spaces are given in [6]: c0(F), I~(F), K(l P, lq), ..~.(l p, I q) (1 < p, 

q < oo). If X and Y are a.u.s, and Y* has the Radon-Nikodym property and the 

approximation property then the tensor-product X (~, Y is a.u.s. ([6]). 

A natural motivation for the introduction of this class is the following: among 

the a.u.s. Banach spaces, a nice characterization of dual spaces (in the isometric 

sense) is available (see [6]). 

THEOREM 10. Let X be an almost uniformly smooth Banach space. 

Then the following assertions are equivalent: 

(1) X is isometric to a dual space. 

(2) For every bounded subset B of X, one has rx (B) = rx..(B), where rx (B) 

denotes the Tchebychev radius of B in X. 

2. Quasi-transitive Banach Spaces 

Let X be a super-reflexive space. Let us assume that X is quasi-transitive in 

the following sense ([1]): there exists x E S(X)  such that the set {I(x), I bijective 

isometry of X} is norm-dense in S(X). Then X is uniformly convex with a 

modulus of convexity of power-type. Indeed, by Theorem 3, there exists at least 

one point Xo such that A(xo, e)=> Ce q. It is easy to show that 12 = {I(x0), I 
bijective isometry} is norm-dense in S(X)  and one has A(y, e ) =  A(xo, e) for 

every y E 12, and every e > 0. By the norm-density of 12 one easily shows that 

A(y, e)-> Ce q for every y G S (X) and e > 0, and this shows that X is uniformly 
convex with modulus of convexity of power-type. 

EXAMPLE. LP([0, 1], dt) (with 1 < p < oo) satisfies this property ([1]). 

3. Uniform Approximation Property 

Let us recall the definition ([13]) 

DEFINmON 11. A Banach space X is said to have the )t-uniform approxima- 

tion property (4-u.a.p.) if 'de > 0, Vk integer, VF subspace of X with dim F = k, 

there exists an operator T : X ~ X with 

(1) rk(T)= nx(k,e),  

(2) 11T [[ =< 4, 
(3) II Tx - x 11--< for x ~ B (F) ,  

where n× (k, e) is an integer which depends on k and e, but not on the space F. 
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J. Lindenstrauss and L. Tzafriri have proved that a super-reflexive space X 

has 1-u.a.p. if and only if X* has 1-u.a.p. ([13]) (S. Heinrich extended this result 

to general spaces by using the ultrapowers ([8])). Theorem 3 permits one to get 

their result and an explicit computation of nx.(k, e) for every equivalent norm 

o n  X .  

First, let us recall the 

DEFINITION 12 ([3]). A Banach space X has the convex approximation 

property if for every e > 0, there exists an integer p such that 

VA C B(X) ,  convA _C convpA + eB(X)  

where 

convp A = hix~, L = 0, hi = 1, xi E A 
i = l  i = l  

R. E. Bruck has proved that the convex approximation property and the 

B-convexity are equivalent ([3]). 

We consider a Banach space X such that X* is B-convex and in the class ~. 

Fix e > 0 ;  we note p(e)  is an integer such that VA C B(X*),  

convA C_ convp~A + eB(X*) 

and ~ is a function such that 

B(X*) C_ conv ~ ( ¢ , ) +  eB(X*). 

If k is an integer and F a subspace of dimension k, the cardinal of an e-net of 

the unit sphere of F is maximized by K • e-k where K is a constant which does 

not depend on F. With these notations, we get 

THEOREM 13. Let X be a reflexive Banach space with X* B-convex and in the 
class ~. Suppose that X has 1-u.a.p., then for every e > O, k integral, one has 

nx. (k, 9e ) < nx (Ke-kp (e ), ~p~ (e)). 

PROOF. Fix e >0 .  Let F CX* ,  dim F = k .  We consider an e-net, 

yl . . . . .  y,k,~,, in the unit sphere of F where l(k,e)<-Ke k. 
Let x E S(F). There exists an integer i E {1, . . . ,  l(k, e)} such that IIx - y i  I[--< 

e;  yi E conv~ ' (~ , )+  eB(X). Thus there exists zi E convp(~)~(~p~) such that 

Zi = E~(~I ) AjZij with 

Aj=>0, ~ A i = l ,  z i jE~(q~) ,  Ilyi-zill_-<3e. 
./=1 
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X is reflexive, thus we can find xo E A ,  such that z,j = [x,~. We consider  

F~ = span{xq ; i = 1 , . . . , l ( k , e ) , j  = 1 , . . . , p ( e ) } ,  

dimF~ =< l(k, e ). p(e ). 

Let  T :  S ~ X such that II TII--< 1, 

II Ty - y [[ -<_ ¢, (e),  y ~ B (F~), 

r k (T )  = < nx(l(k,  e ). p(e ), ~ (e )). 

Thus,  if T* is the conjugate  of T, 

IlT*x -xll<--llT*(x -y,)ll + II T ' y , - y ,  ll+lly,-xll 

_-<2e + II T*(y , -  z,)ll+llT*z,- z, II + I l z , -  y, ll 
p(~) 

=<8e + ~ A~II T*z,~-  z,,ll 
j=l 

=<9e. 

Indeed, 

T*fx,j (xq) = f~,, (Tx,,) = 1 - (fx,, (x,,) - fx,, (Tx,,)) 

_-> 1 -II x,, - Zx,, II 

_-> 1 -  ~ (e ) .  

X satisfies the condit ion (a) of Definit ion 7, then 

]lT*f.,,-f.,,[t<-_~. • 

REMARK. A super-reflexive space is B-convex  and in the class ~ for every  

equivalent  norm. Moreover ,  if X is super-reflexive and has A-u.a.p. then X has 

the 1-u.a.p. for  every  equivalent  norm ([13]). Thus  every super-reflexive space 

with A-u.a.p. satisfies T h e o r e m  13 for every  equivalent  norm. 

Let  us also note  that  the funct ion ~ is uni form on the norms N satisfying 

A N ( x )  <= IIx II--< BN(x) .  
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